मराठी

यदि (x+iy)13 = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि xa-yb = –2(a2 + b2) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)

बेरीज

उत्तर

`(x + iy)^(1/3)` = a + ib

⇒ x + iy = (a + ib)3

अर्थात् x + iy = a3 + i3 b3 + 3a2(ib) + 3a(ib)2

= a3 – ib3 + i3a2b – 3ab2

= a3 – 3ab2 + i(3a2b – b3)

⇒ x = a3 – 3ab2 and y = 3a2b – b3

अतः `x/a = a^2 - 3b^2` और `y/b = 3a^2 - b^2`

इसलिए, `x/a - y/b = a^2 - 3b^2 + b^2`

= `-2a^2 - 2b^2`

= –2(a2 + b2)

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - हल किए हुए उदाहरण [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
हल किए हुए उदाहरण | Q 2 | पृष्ठ ७८

संबंधित प्रश्‍न

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

4 - 3i


सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

`sqrt5  + 3i`


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 + i


यदि `x  –  iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+7i)/(2-i)^2`


यदि `((1+i)/(1-i))^m` =   1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।


'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।


वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


समीकरण |z| = z + 1 + 2i को हल कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।


यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?


यदि `((1 + i)/(1 - i))^x` = 1, तो


किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×