Advertisements
Advertisements
प्रश्न
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
उत्तर
टिप्पणी दि गई है कि `(1 + i)^2/(2 - i)` = x + iy ⇒ `(1 + i^2 + 2i)/(2 - i)` = x + iy
⇒ `(1 - 1 + 2i)/(2 - i)` = x + iy ⇒ `(2i)/(2 - i)` = x + iy
⇒ `(2i(2 + i))/((2 - i)(2 + i))` = x + iy ⇒ `(4i + 2i^2)/(4 - i^2)` = x + iy ...(i)
समीकरण (i) हल करें।
⇒ `(4i - 2)/(4 + 1)` = x + iy ......[∵ i2 = –1]
⇒ `(-2 + 4i)/5` = x + iy
⇒ `(-2)/5 + 4/5 i` = x + iy
वास्तविक और काल्पनिक भागों की तुलना करें,
x = `(-2)/5` और y = `4/5`
इसलिए, x + y = `(-2)/5 + 4/5 = 2/5`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+3i)/(1-2i)`
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
`(-sqrt-1)^{4n - 3}` का मान ______ है, जहाँ n ∈ N
यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:
स्तंभ A | स्तंभ B |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
1 - i के कोणांक का मुख्य मान क्या है?
1 + i2 + i4 + i6 + ... + i2n है:
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।
समीकरण |z| = z + 1 + 2i को हल कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है
यदि `((1 + i)/(1 - i))^x` = 1, तो
x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है