मराठी

यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।

बेरीज

उत्तर

पता है कि, |z + 1| = z + 2(1 + i)

मानो, z = x + iy

डालो फिर, |x + iy + 1| = (x + iy) + 2(1 + i)

⇒ |(x + 1) + iy| = x + iy + 2 + 2i

⇒ |(x + 1) + iy| = (x + 2) + (y + 2)i

⇒ `sqrt((x + 1)^2 + y^2)` = (x + 2) + (y + 2)i   ......`[because |x + iy| = sqrt(x^2 + y^2)]`

दोनों बाजू का वर्गमूल निकालने पर, हमें मिला,

(x + 1)2 + y2 = (x + 2)2 + (y + 2)2 .i2 + 2(x + 2)(y + 2)i

⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i

वास्तविक और काल्पनिक भागों की तुलना करें,

x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y और 2(x + 2)(y + 2) = 0

⇒ 2y2 – 2x + 4y + 1 = 0   ......(i)

और (x + 2)(y + 2) = 0  .....(ii)

x + 2 = 0 or y + 2 = 0

∴ x = –2 or y = –2

अब X = –2 समीकरण (i) में डालें।

2y2 – 2 × (–2) + 4y + 1 = 0

⇒ 2y2 + 4 + 4y + 1 = 0 

⇒ y2 + 4y + 5 = 0

b2 – 4ac = (4)2 – 4 × 2 × 5

16 – 40 = –24 < 0 कोई वास्तविक जड़ें नहीं।

समीकरण (i) में y = –2 डालें,

2(–2)2 – 2x + 4(–2) + 1 = 0

8 – 2x – 8 + 1 = 0

⇒ x = `1/2` और y = –2

इसलिए, z = x + iy = `(1/2 - 2i)`

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 12. | पृष्ठ ९२

संबंधित प्रश्‍न

`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3


यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


1 + i का गुणनात्मक प्रतिलोम ______ है।

यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?


यदि `((1 + i)/(1 - i))^x` = 1, तो


x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


यदि a + ib = c + id, तो


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×