मराठी

बताइए कि निम्नलिखित कथन सत्य है या असत्य है। |z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

स्पष्टीकरण:

देखिए, z = x + yi

पता है की |z – 1| = |z – i|

|x + yi – 1| = |x + yi – i|

⇒ `|(x - 1) + yi| = |x - (1 - y)i|`

⇒ `sqrt((x - 1)^2 + y^2) = sqrt(x^2 + (1 - y^2))`

⇒ (x – 1)2 + y2 = x2 + (1 – y)2

आगे हल करें।

⇒ x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y

⇒ –2x + 2y = 0

⇒ x – y = 0

ऐसा समझें, यह एक लंब रेखा है।

पता है कि, ढलान 1 है।

(1, 0) और (0, 1) बिंदु के माध्यम से रेखा के समीकरण का पता लगाएं और

⇒ y – 0 = `(1 - 0)/(0 - 1) (x - 1)`

⇒ y = –x + 1

इसलिए, ढलान –1 है।

दो ढलान लाइनों को गुणा करें।

= –1 × 1 = –1

इसलिए, रेखाएं लंबवत हैं।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है। यह सत्य है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 26. (iv) | पृष्ठ ९३

संबंधित प्रश्‍न

निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+7i)/(2-i)^2`


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


यदि `((1+i)/(1-i))^m` =   1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।


मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3


यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।


'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।


`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 - i के कोणांक का मुख्य मान क्या है?


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


1 + i2 + i4 + i6 + ... + i2n है: 


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।


(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है


किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×