Advertisements
Advertisements
प्रश्न
प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:
विकल्प
वृत्त x2 + y2 = 1 पर
x-अक्ष पर
y-अक्ष पर
रेखा x + y = 1 पर
उत्तर
x-अक्ष पर
स्पष्टीकरण:
पता है कि, `|(i + z)/(i - z)|` = 1
देखिए, z = x + yi
⇒ `|(i + x + yi)/(i - x - yi)|` = 1
⇒ `|(x + (y + 1)i)/(-x - (y - 1)i)|` = 1
⇒ `|x + (y + 1)i| = |-x - (y - 1)i|`
⇒ `sqrt(x^2 + (y + 1)^2) = sqrt(x^2 + (y - 1)^2)`
दोनों पक्षों को वर्ग।
⇒ x2 + (y + 1)2 = x2 + (y – 1)2
⇒ (y + 1)2 = (y – 1)2
⇒ 2y = –2y
⇒ 4y = 0
इसलिए, y = 0
इसलिए, x अक्ष पर z निहित है।
सही विकल्प x अक्ष है।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
4 - 3i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+3i)/(1-2i)`
समीकरण `|1-i|^x = 2^x` के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
`(-sqrt-1)^{4n - 3}` का मान ______ है, जहाँ n ∈ N
`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
1 - i के कोणांक का मुख्य मान क्या है?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि `((1 + i)/(1 - i))^x` = 1, तो
x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______
θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है: