Advertisements
Advertisements
प्रश्न
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
पता है की, |z – 4| < |z – 2|
देखो z = x + yi
⇒ |x + yi – 4| < |x + yi – 2|
⇒ |(x – 4) + yi| < |(x – 2) + yi|
⇒ `sqrt((x - 4)^2 + y^2) < sqrt((x - 2)^2 + y^2)`
⇒ (x – 4)2 + y2 < (x – 2)2 + y2
आगे हल करें।
⇒ (x – 4)2 < (x – 2)2
⇒ x2 + 16 – 8x < x2 + 4 – 4x
⇒ –8x + 4x < –16 + 4
⇒ –4x < –12
⇒ x > 3
कथन असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है यह सही है।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
4 - 3i
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
`sqrt5 + 3i`
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
यदि a + ib = c + id, तो
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है