Advertisements
Advertisements
प्रश्न
समीकरण `|1-i|^x = 2^x` के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।
उत्तर
`|1-i|^x = 2^x`
⇒ `(sqrt(1^2 + (-1)^2))^x = 2^x`
⇒ `(sqrt2)^x = 2^x`
⇒ `2^(x/2) = 2^x`
⇒ `x/2 = x`
⇒ x = 2x
⇒ 2x - x = 0
⇒ x = 0
इस समीकरण का 0 के अतिरिक्त और कोई हल नहीं हो सकता।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
1 + i2 + i4 + i6 + ... + i2n है:
सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
यदि `((1 + i)/(1 - i))^x` = 1, तो
x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि a + ib = c + id, तो
यदि z एक सम्मिश्र संख्या है, तो