हिंदी

यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब |β-α1-α¯β| का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।

योग

उत्तर

`|(beta - alpha)/(1 - baralpha beta)|^2 = ((beta - alpha)/(1 - baralpha beta))bar(((beta - alpha)/(1 - baralpha beta))`

= `(beta - alpha)/(1 - baralpha beta) xx (barbeta - baralpha)/(1 - baralpha beta)`

= `(beta barbeta - baralphabeta - alpha barbeta + alpha baralpha)/(1 - alpha barbeta - baralphabeta +alphabaralpha.betabarbeta)`

= `(|beta|^2 - baralphabeta  - alphabarbeta + |alpha|^2)/(1 - alphabarbeta  -  baralphabeta  + |alpha|^2 . |beta|^2`)`

दिया है  |β| = 1  हो,

= `(1 + |alpha|^2 - baralphabeta  -  alphabarbeta)/(1 + |alpha|^2 - baralphabeta - alphabarbeta)`

= 1

`|(beta - alpha)/(1 - baralphabeta)|  =  1  "या"  |(beta - alpha)/(1 - baralphabeta)|  = 1`

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सम्मिश्र संख्याएँ और द्विघातीय समीकरण - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ १२१]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 5 सम्मिश्र संख्याएँ और द्विघातीय समीकरण
अध्याय 5 पर विविध प्रश्नावली | Q 17. | पृष्ठ १२१

संबंधित प्रश्न

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


समीकरण `|1-i|^x = 2^x`  के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


यदि `((1+i)/(1-i))^m` =   1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।


यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।


x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×