Advertisements
Advertisements
प्रश्न
विकल्प
`(n + 1)pi/2`
`(2n + 1)pi/2`
nπ
इनमें से कोई नहीं, जहाँ n ∈ N
उत्तर
nπ
स्पष्टीकरण:
देखिए z = `(1 - i sin alpha)/(1 + 2i sin alpha)`
संयुग्म के साथ गुणा करें |
= `((1 - i sin alpha)(1 - 2i sin alpha))/((1 + 2i sin alpha)(1 - 2i sin alpha))`
= `(1 - 2i sin alpha - i sin alpha + 2i^2 sin^2 alpha)/((1)^2 - (2i sin alpha)^2`
= `(1 - 3i sin alpha - 2 sin^2 alpha)/(1 - 4i^2 sin^2 alpha)`
= `((1 - 2 sin^2 alpha) - 3i sin alpha)/(1 + 4 sin^2 alpha)`
आगे हल करें।
= `(1 - 2 sin^2 alpha)/(1 + 4 sin^2 alpha) - (3sin alpha)/(1 + 4 sin^2 alpha) .i`
जानते हैं कि, z विशुद्ध रूप से वास्तविक है।
= `(-3 sin alpha)/(1 + 4 sin^2 alpha)` = 0
⇒ sinα = 0
⇒ α = nπ, n ∈ N
सही विकल्प nπ है।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
`sqrt5 + 3i`
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+3i)/(1-2i)`
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
1 + i2 + i4 + i6 + ... + i2n है:
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
समीकरण |z| = z + 1 + 2i को हल कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है