Advertisements
Advertisements
प्रश्न
यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।
उत्तर
टिप्पणी दि गई है कि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy
⇒ `[(1 + i)/(1 - i) xx (1 + i)/(1 + i)]^3 - [((1 - i)(1 - i))/((1 + i)(1 - i))]^3` = x + iy
⇒ `[(1 + i^2 + 2i)/(1 - i^2)]^3 - [(1 + i^2 - 2i)/(1 - i^2)]^3` = x + iy ......(i)
समीकरण (i) हल करें।
⇒ `[(1 - 1 + 2i)/(1 + 1)]^3 - [(1 - 1 - 2i)/(1 + 1)]^3` = x + iy
⇒ `((2i)/2)^3 - ((-2i)/2)^3` = x + iy ....(ii)
समीकरण (ii) हल करें।
⇒ (i)3 – (–i)3 = x + iy
⇒ i2.i + i2.i = x + iy
⇒ – i – i = x + iy
⇒ 0 – 2i = x + iy
वास्तविक और काल्पनिक भागों की तुलना करें,
x = 0 और y = –2
इसलिए, (x, y) का आवश्यक मान (0, −2) है
APPEARS IN
संबंधित प्रश्न
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
यदि `x – iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+7i)/(2-i)^2`
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
1 + i2 + i4 + i6 + ... + i2n है:
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है