Advertisements
Advertisements
प्रश्न
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
उत्तर
माना, आयत की लंबाई l हो।
दिया आयत का है = x2 + 7x + 12
और आयत की चौड़ाई = (x + 3)
आयत की लंबाई ज्ञात करें -
चूंकि, आयत आयत का क्षेत्रफल = लंबाई × चौड़ाई
⇒ `l = "आयत का क्षेत्रफल"/"चौड़ाई"`
⇒ `l = (x^2 + 7x + 12)/(x + 3) = (x^2 + 4x + 3x + 12)/(x + 3)`
⇒ `l = (x(x + 4) + 3(x + 4))/(x + 3)`
⇒ `l = ((x + 4)(x + 3))/((x + 3)) = (x + 4)`
इस प्रकार, आयत की लंबाई (x + 4) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
10a2 − 15b2 + 20c2
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
− 4a2 + 4ab − 4 ca
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
a4 – (a – b)4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)
एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।