Advertisements
Advertisements
प्रश्न
एक काले और एक लाल पासे को उछाला गया है:
पासों पर प्राप्त संख्याओं का योग 8 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि लाल पासे पर 4 से कम है।
उत्तर
माना E घटना पासों पर प्राप्त संख्याओं का योगफल 8 होने तथा F घटना लाल पासे पर प्रकट संख्या 4 से कम घटित होने को निरूपित करता है।
E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}
कुल प्रकार = 18
E ∩ F = {(2, 6), (3, 5)}
P(E ∩ F) = `2/36 = 1/18`
P(F) = `18/36 = 1/2`
P(E|F) = `(P(E ∩ F))/(P(F))`
= `1/18 ÷ 1/2`
= `1/9`
APPEARS IN
संबंधित प्रश्न
यदि E और F इस प्रकार की घटनाएँ हैं कि P(E) = 0.6, P(F) = 0.3 और P(E ∩ F) = 0.2, तो P(E|F) और P(F|E) ज्ञात कीजिए।
P(A|B) ज्ञात कीजिए, यदि P(B) = 0.5 और P(A ∩ B) = 0.32
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए।
- P(A ∩ B)
- P(A|B)
- P(A ∪ B)
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |
P(A|B)
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |
P(A ∪ B)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए।
- P(A ∩ B)
- P(A|B)
- P(B|A)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(A|B)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(B|A)
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E: अधिकतम दो पट F: न्यूनतम दो पट
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
दो सिक्कों को एक बार उछाला गया है:
E : कोई पट प्रकट नहीं होता है, F : कोई चित प्रकट नहीं होता है।
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक पासे को तीन बार उछाला गया है:
E: तीसरी उछाल पर संख्या 4 प्रकट होना
F: पहली दो उछालों पर क्रमशः 6 तथा 5 प्रकट होना।
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E|F) और P(F|E)
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E|G) और P(G|E)
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E ∪ F|G) और P(E ∩ F|G)
मान लें कि जन्म लेने वाले बच्चे को लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है? यदि यह दिया गया है कि
- सबसे छोटा बच्चा लड़की है।
- न्यूनतम एक बच्चा लड़की है।
यह दिया गया है कि दो पासों को फेंकने पर प्राप्त संख्याएँ भिन्न-भिन्न हैं। दोनों संख्याओं का योग 4 होने की प्रायिकता ज्ञात कीजिए।
यदि P(A) =`1/2`, P(B) = 0 तब P(A|B) है:
यदि A और B दो घटनाएँ इस प्रकार हैं कि P(A|B) = P(B|A) ≠ 0 तब ______.
एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।
मान लीजिए कि 90% लोग दाहिने हाथ से काम करने वाले हैं। इसकी प्रायिकता क्या है कि 10 लोगों में से यादृच्छया चुने गए अधिक से अधिक 6 लोग दाहिने हाथ से काम करने वाले हों?
एक बाधा दौड़ में एक प्रतियोगी को 10 बाधाएँ पार करनी है इसकी प्रायिकता कि वह प्रत्येक बाधा को पार कर लेगा `5/6` है। इसकी क्या प्रायिकता है कि वह 2 से कम बाधाओं को गिरा देगा (नहीं पार कर पाएगा)?
यदि A और B ऐसी दो घटनाएँ हैं कि P(A) + P(B) – P(A और B) = P(A), तब ______.