Advertisements
Advertisements
प्रश्न
एक कक्षा में 50 विद्यार्थी हैं, जिनमें से 30 लड़कियाँ हैं। एक टेस्ट में लड़कियों द्वारा (100 में से) प्राप्त किए गए अंकों का माध्य 73 तथा लड़कों का 71 है। संपूर्ण कक्षा के माध्य प्राप्तांक ज्ञात कीजिए।
उत्तर
दिया गया है, 50 विद्यार्थियों में लड़कियों की संख्या = 30
∴ 50 विद्यार्थियों में लड़कों की संख्या = 50 – 30 = 20
अब, 30 लड़कियों द्वारा प्राप्त किए गए अंक = 30 × 73 = 2190 और 20 लड़कों द्वारा प्राप्त किए गए अंक = 20 × 71 = 1420 ...[एक परीक्षा में लड़कियों द्वारा प्राप्तांक 73 है और लड़कों का है 71]
∴ पूरी कक्षा के माध्य प्राप्तांक
= `("30 लड़कियों द्वारा प्राप्त अंक" + "20 लड़कियों द्वारा प्राप्त अंक")/("लड़कियों की संख्या" + "लड़कों की संख्या")`
= `(2190 + 1420)/(20 + 30)`
= `3610/50`
= 72.2
अतः, पूरी कक्षा का माध्य प्राप्तांक 72.2 है।
APPEARS IN
संबंधित प्रश्न
एक टीम ने फुटबाल के 10 मैचों में निम्नलिखित गोल किए : 2, 3,4, 5, 0, 1, 3, 3, 4, 3 इन गोलों के माध्य, माध्यक और बहुलक ज्ञात कीजिए।
यदि x, x + 3, x + 5, x + 7 प्रेक्षणों और x + 10 का माध्य 9 है, तो अंतिम तीन प्रेक्षणों का माध्य है
यदि आँकड़ों के प्रत्येक प्रेक्षण में 5 की वृद्धि की जाती है तो उनका माध्य ______।
100 प्रेक्षणों का माध्य 50 है। यदि इनमें से एक प्रेक्षण 50 को 150 से प्रतिस्थापित कर दिया जाए तो परिणामी माध्य हो जाएगा :
4, 4, 5, 7, 6, 7, 7, 12, 3 संख्याओं का माध्यक है :
दो सिक्कों को 1000 बार उछाला जाता है और इनके परिणाम निम्नलिखित प्रकार से रिकार्ड किए जाते हैं :
चितों की संख्या | 2 | 1 | 0 |
बारंबारता | 200 | 550 | 250 |
इस सूचना के आधार पर अधिकतम एक चित की प्रायिकता है :
एक संग्रह में से 80 बल्ब यादृच्छिक रूप से चुने जाते हैं और उनके जीवन कालों (घंटों में) को निम्नलिखित बारंबारता सारणी के रूप में रिकार्ड किया गया :
जीवन काल (घंटों में) | 300 | 500 | 700 | 900 | 1100 |
बारंबारता | 10 | 12 | 23 | 25 | 10 |
इस संग्रह में से एक बल्ब यादृच्छिक रूप से चुना जाता है। इस बल्ब का जीवन काल 1150 घंटा होने की प्रायिकता है :
गणित के एक टेस्ट में, 33 विद्यार्थियों द्वारा (100 में से) प्राप्त किए गए अंक निम्नलिखित हैं :
69, 48, 84, 58, 48, 73, 83, 48, 66, 58, 84, 66, 64, 71, 64, 66, 69, 66, 83, 66, 69, 71, 81, 71, 73, 69, 66, 66, 64, 58, 64, 69, 69
इन आँकड़ों को एक बारंबारता बंटन द्वारा निरूपित कीजिए।
यदि निम्नलिखित आँकड़ों का माध्य 20.2 है, तो p का मान ज्ञात कीजिए :
x | 10 | 15 | 20 | 25 | 30 |
f | 6 | 8 | p | 10 | 6 |
निम्नलिखित बंटन का माध्य 50 है।
x | f |
10 | 17 |
30 | 5a + 3 |
50 | 32 |
70 | 7a – 11 |
90 | 19 |
a का मान ज्ञात कीजिए और फिर 30 और 70 की बारंबारता ज्ञात कीजिए।