मराठी

एक लंब वृत्तीय शंकु में, उसके आधार के समांतर खींचे गये तल द्वारा काटा गया अनुप्रस्थ-काट होता है एक ______। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक लंब वृत्तीय शंकु में, उसके आधार के समांतर खींचे गये तल द्वारा काटा गया अनुप्रस्थ-काट होता है एक ______।

पर्याय

  • वृत्त

  • शंकु का छिन्नक

  • गोला

  • अर्धगोला

MCQ
रिकाम्या जागा भरा

उत्तर

एक लंब वृत्तीय शंकु में, उसके आधार के समांतर खींचे गये तल द्वारा काटा गया अनुप्रस्थ-काट होता है एक शंकु का छिन्नक

स्पष्टीकरण:

हम जानते हैं कि, यदि किसी शंकु को आधार के समान्तर किसी समतल द्वारा काटा जाता है, तो समतल और आधार के बीच का भाग शंकु का छिन्नक कहलाता है।

shaalaa.com
शंकु का छिन्नक
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: पृष्ठीय क्षेत्रफल और आयतन - प्रश्नावली 12.1 [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 12 पृष्ठीय क्षेत्रफल और आयतन
प्रश्नावली 12.1 | Q 19. | पृष्ठ १४२

संबंधित प्रश्‍न

पानी पीने वाला एक गिलास 14 सेमी ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 सेमी और 2 सेमी हैं। इस गिलास की धारिता ज्ञात कीजिए।   [उपयोग π = 22/7]


एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 सेमी है तथा इसके वृत्तीय सिरों के परिमाप 18 सेमी और 6 सेमी हैं। इस छिन्नक का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।


20 सेमी ऊँचाई और शीर्ष कोण 60 डिग्री वाले एक शंकु को उसकी ऊँचाई के बीचोबीच से होकर जाते हुए एक तल से दो भागों में काटा गया है, जबकि तल शंकु के आधार के समांतर है। यदि इस प्राप्त शंकु के छिन्नक को व्यास `1/16` सेमी वाले एक तार के रूप में बदल दिया जाता है तो तार की लंबाई ज्ञात कीजिए।  [उपयोग π = `22/7`]


एक शंकु के छिन्नक के आयतन का सूत्र व्युत्पन्न कीजिए।


बैडमिंटन खेलने में प्रयोग की जाने वाली शटलकॉक ( चिड़िया ) का आकार निम्नलिखित का संयोजन ______ है।


एक शंकु को उसके आधार के समांतर एक तल की सहायता से काटा जाता है और फिर तल के एक ओर बने शंकु को हटा दिया जाता है। तल के दूसरी ओर बचा हुआ नया भाग कहलाता है एक ______।


शंकु के एक छिन्नक का आयतन `1/3 pih[r_1^2 + r_2^2 - r_1r_2]` होता है, जहाँ h छिन्नक की ऊर्घ्वाधर ऊँचाई है और r1, r2 सिरों की त्रिज्याएँ हैं।


शंकु के एक छिन्नक का वक्र पृष्ठीय क्षेत्रफल πl (r1 + r2) होता है, जहाँ `l = sqrt(h^2 + (r_1 + r _2)^2)` है, r1 और r2 छिन्नक के दोनों सिरों की त्रिज्याएँ हैं तथा h ऊर्ध्वाधर ऊँचाई है।


धातु की एक खुली बाल्टी इस आकार जैसी है कि उसी धातु की चादर से बने बेलनाकार (खोखला) आधार पर एक शंकु का छिन्नक रखा हुआ है। इसके लिए प्रयुक्त धातु की चादर का पृष्ठीय क्षेत्रफल बराबर है :

शंकु के छिन्नक का वक्र पृष्ठीय क्षेत्रफल + वृत्ताकार आधार का क्षेत्रफल + बेलन का वक्र पृष्ठीय क्षेत्रफल


कोई बाल्टी एक शंकु के छिन्नक के आकार की है और इसमें 28.490 लीटर पानी आ सकता है। इसके ऊपरी और निचले सिरों की त्रिज्याएँ क्रमशः 28 cm और 21 cm हैं। इस बाल्टी की ऊँचाई ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×