मराठी

एक समद्विबाहु त्रिभुज का परिमाप 32 cm है। एक बराबर भुजा और आधार का अनुपात 3 : 2 है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक समद्विबाहु त्रिभुज का परिमाप 32 cm है। एक बराबर भुजा और आधार का अनुपात 3 : 2 है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।

बेरीज

उत्तर


मान लीजिए ABC एक समद्विबाहु त्रिभुज है जिसका परिमाप 32 cm है।

हमारे पास, इसके आधार के बराबर भुजा का अनुपात 3 : 2 है।

माना त्रिभुज की भुजाएँ AB = AC = 3x, BC = 2x हैं।

∵ त्रिभुज का परिमाप = 32 m

अब, 3x + 3x + 2x = 32

`\implies` 8x = 32

`\implies` x = 4

∴ AB = AC = 3 × 4 = 12 cm

तथा BC = 2x = 2 × 4 = 8 cm

एक त्रिभुज की भुजाएँ a = 12 cm, b = 12 cm और c = 8 cm हैं। 

∴ समद्विबाहु त्रिभुज की अर्द्धपरिधि,

`s = (a + b + c)/2`

= `(12 + 12 + 8)/2`

= `32/2`

= 16 cm

∴ समद्विबाहु ΔABC का क्षेत्रफल

= `sqrt(s(s - a)(s - b)(s - c))`  ...[हीरोन के सूत्र द्वारा]

= `sqrt(16(16 - 12)(16 - 12)(16 - 8))`  

= `sqrt(16 xx 4 xx 4 xx 8)`

= `4 xx 4 xx 2sqrt(2)  cm^2`

= `32sqrt(2)  cm^2`

अत:, एक समद्विबाहु त्रिभुज का क्षेत्रफल `32sqrt(2)  cm^2` है।

shaalaa.com
त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: हीरोन का सूत्र - प्रश्नावली 12.3 [पृष्ठ ११८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 12 हीरोन का सूत्र
प्रश्नावली 12.3 | Q 4. | पृष्ठ ११८

संबंधित प्रश्‍न

एक यातायात संकेत बोर्ड पर 'आगे स्कूल है’ लिखा है और यह भुजा ‘a‘ वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप 180 cm है, तो इसका क्षेत्रफल क्या होगा?


उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 cm और 10 cm हैं तथा उसका परिमाप 42 cm है।


एक समद्विबाहु त्रिभुज का परिमाप 30 cm है और उसकी बराबर भुजाएँ 12 cm लंबाई की हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों की सिलाई करके एक छाता बनाया गया है (देखिए आकृति) प्रत्येक टुकड़े के माप 20 सेमी, 50 सेमी और 50 सेमी हैं। छाते में प्रत्येक रंग का कितना कपड़ा लगा है?


आधार 2 cm और बराबर भुजाओं में से एक भुजा 4 cm वाले समद्विबाहु त्रिभुज का क्षेत्रफल है


एक समबाहु त्रिभुज का क्षेत्रफल `20sqrt(3)` cm2 है, जिसकी प्रत्येक भुजा 8 cm है। 


भुजा a वाले एक समषड्भुज का क्षेत्रफल भुजा a वाले पाँच समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


एक त्रिभुजाकार मैदान जिसकी भुजाएँ 51 m, 37 m और 20 m हैं को 3 रु. प्रति m2 की दर से समतल कराने का व्यय 918 रु है।


भुजाओं 50 m, 65 m और 65 m वाले त्रिभुजाकार खेत में 7 रु. प्रति m2 की दर से घास लगवाने का व्यय ज्ञात कीजिए।


निम्नलिखित आकृति में, ∆ABC की भुजाओं में AB = 7.5 cm, AC = 6.5 cm और BC = 7 cm है। आधार BC पर एक समांतर चतुर्भुज DBCE की रचना की जाती है, जो क्षेत्रफल में ∆ABC के बराबर है। इस समांतर चतुर्भुज की ऊँचाई DF ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×