मराठी

निम्नलिखित आकृति में, ∆ABC की भुजाओं में AB = 7.5 cm, AC = 6.5 cm और BC = 7 cm है। आधार BC पर एक समांतर चतुर्भुज DBCE की रचना की जाती है, जो क्षेत्रफल में ∆ABC के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित आकृति में, ∆ABC की भुजाओं में AB = 7.5 cm, AC = 6.5 cm और BC = 7 cm है। आधार BC पर एक समांतर चतुर्भुज DBCE की रचना की जाती है, जो क्षेत्रफल में ∆ABC के बराबर है। इस समांतर चतुर्भुज की ऊँचाई DF ज्ञात कीजिए।

बेरीज

उत्तर

अब, पहले ∆ABC का क्षेत्रफल ज्ञात कीजिए।

एक त्रिभुज की भुजाएँ AB = a = 7.5 cm, BC = b = 7 cm और CA = c = 6.5 cm हैं।

अब, त्रिभुज की अर्ध-परिधि,

`s = (a + b + c)/2`

= `(7.5 + 7 + 6.5)/2`

= `21/2`

= 10.5 cm

∴ ΔABC का क्षेत्रफल = `sqrt(s(s - a)(s - b)(s - c))`  ...[हीरोन के सूत्र द्वारा]

= `sqrt(10.5(10.5 - 7.5)(10.5 - 7)(10.5 - 6.5))`

= `sqrt(10.5 xx 3 xx 3.5 xx 4)`

= `sqrt(441)`

= 21 cm2  ...(i)

अब, समांतर चतुर्भुज BCED का क्षेत्रफल = आधार × ऊँचाई

= BC × DF

= 7 × DF  ...(ii)

प्रश्न के अनुसार,

∆ABC का क्षेत्रफल = समांतर चतुर्भुज BCED का क्षेत्रफल

⇒ 21 = 7 × DF  ...[समीकरण (i) और (ii) से]

⇒ DF = `21/4` = 3 cm

अतः, समांतर चतुर्भुज की ऊँचाई 3 cm है।

shaalaa.com
त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: हीरोन का सूत्र - प्रश्नावली 12.4 [पृष्ठ १२१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 12 हीरोन का सूत्र
प्रश्नावली 12.4 | Q 6. | पृष्ठ १२१

संबंधित प्रश्‍न

किसी पार्क में एक फिसल पट्टी (Slide) बनी हुई है। इसकी पार्श्वीय दीवारों (Side Walls) में से एक दीवार पर किसी रंग से पेंट किया गया है और उस पर ‘‘पार्क को हरा-भरा और साफ़ रखिए” लिखा हुआ है। (देखिए आकृति)। यदि इस दीवार की विमाएँ 15 m, 11 m और 6 m हैं, तो रंग से पेंट हुए भाग का क्षेत्रफल ज्ञात कीजिए।


क्षेत्रफल `9sqrt(3)` cm2 वाले एक समबाहु त्रिभुज की प्रत्येक भुजा की लंबाई है


यदि एक समबाहु त्रिभुज का क्षेत्रफल `16sqrt(3)` cm2 है, तो इस त्रिभुज का परिमाप है


एक समबाहु त्रिभुज का क्षेत्रफल `20sqrt(3)` cm2 है, जिसकी प्रत्येक भुजा 8 cm है। 


एक समांतर चतुर्भुज का आधार और संगत शीर्षलंब क्रमश : 10 cm और 3.5 cm हैं। उस समांतर चतुर्भुज का क्षेत्रफल 30 cm2 है।


भुजा a वाले एक समषड्भुज का क्षेत्रफल भुजा a वाले पाँच समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


एक त्रिभुजाकार मैदान जिसकी भुजाएँ 51 m, 37 m और 20 m हैं को 3 रु. प्रति m2 की दर से समतल कराने का व्यय 918 रु है।


एक समबाहु त्रिभुज के अभ्यंतर में स्थित किसी बिंदु से तीनों भुजाओं पर लंब डाले जाते हैं। इन लंबों की लंबाई 14 cm, 10 cm और 6 cm हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


एक समद्विबाहु त्रिभुज का परिमाप 32 cm है। एक बराबर भुजा और आधार का अनुपात 3 : 2 है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


एक त्रिभुजाकार खेत का परिमाप 420 m है तथा इसकी भुजाओं का अनुपात 6 : 7 : 8 है। इस खेत का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×