Advertisements
Advertisements
प्रश्न
एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?
उत्तर
मान लीजिए कि AB और CD O पर केन्द्रित एक वृत्त में दो समानांतर जीवाएँ हैं। OB और OD को मिलाएँ।
छोटी जीवा AB की वृत्त के केंद्र से दूरी = 4 सेमी
OM = 4 cm
MB = AB/2 = 6/2 = 3cm
In ΔOMB,
OM2 + MB2 = OB2
(4)2 + (3)2 = OB2
16 + 9 = OB2
OB2 = 25
`OB = sqrt25`
OB = 5cm
In ΔOND,
OD = OB = 5cm (एक ही वृत्त की त्रिज्या)
ND = CD/2 = 8/2 = 4cm
ON2 + ND2 = OD2
ON2 + (4)2 = (5)2
ON2 = 25 - 16 = 9
ON = 3
अत: बड़ी जीवा की केन्द्र से दूरी 3 सेमी है।
APPEARS IN
संबंधित प्रश्न
आकृति में, ∠PQR = 100° है, जहाँ P, Q तथा R केंद्र O वाले एक वृत्त पर स्थित बिंदु हैं। ∠OPR ज्ञात कीजिए।
यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।
यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।
दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं (देखिए आकृति में)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।
सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केंद्रों की रेखा प्रतिच्छेदन के दो बिंदुओं पर समान कोण अंतरित करती है।
मान लीजिए कि एक कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त के साथ समान जीवाओं AD और CE को प्रतिच्छेद करती हैं। सिद्ध कीजिए कि ∠ABC, जीवाओं AC और DE द्वारा केंद्र में अंतरित कोणों के अंतर के आधे के बराबर है।
सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेदन बिंदु से होकर गुजरता है।
एक त्रिभुज ABC के कोण A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि त्रिभुज DEF के कोण हैं `90^@-1/2A, 90^@-1/2B" तथा "90^@-1/2C` हैं
ABCD एक चक्रीय चतुर्भुज है, जिसमें ∠A = 90°, ∠B = 70°, ∠C = 95° और ∠D = 105° है।
यदि A, B, C और D चार बिंदु इस प्रकार हैं कि ∠BAC = 45° और ∠BDC = 45° है, तो A, B, C और D चक्रीय है।