मराठी

एक वृत्त की क्रमशः 5 सेमी 11 सेमी लम्बाई की दो जीवाएँ AB और CD एक दूसरे के समानांतर हैं और इसके केंद्र के विपरीत दिशा में हैं। यदि AB और CD के बीच की दूरी 6 सेमी है, - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक वृत्त की क्रमशः 5 सेमी 11 सेमी लम्बाई की दो जीवाएँ AB और CD एक दूसरे के समानांतर हैं और इसके केंद्र के विपरीत दिशा में हैं। यदि AB और CD के बीच की दूरी 6 सेमी है, तो वृत्त की त्रिज्या ज्ञात कीजिए।

बेरीज

उत्तर

OM ⊥ AB और ON ⊥ CD बनाइए। OB और OD को मिलाइए।

BM = AB/2 = 5/2 (केंद्र से लंबवत जीवा को समद्विभाजित करता है)

ND = CD/2 = 11/2

चलो ON हो x इसलिए, OM 6− x होगा।

In ΔMOB,

OM2 + MB2 = OB2

(6 - x)2 + (5/2)2 = OB2

36 + x2 - 12x + 25/4 = OB2                 ........(1)

In ΔNOD,

ON2 + ND2 = OD2

x2 + (11/2)2 = OD2

x2 + 121/4 = OD2                          .........(2)

हमारे पास OB = OD (उसी वृत्त की त्रिज्याएँ) हैं।

इसलिए, समीकरण (1) और (2) से,

`36+x^2-12x+25/4=x^2+121/4`

`12x=36+24/4-121/4`

      `=(144+25-121)/4`

      `=48/4`

       = 12

x = 1

समीकरण (2) से,

`(1)^2+(121/4)=OD^2`

`OD^2 = 1+121/4=125/4`

`OD=5/2sqrt5`

इसलिए, वृत्त की त्रिज्या है  `5/2sqrt5" cm."`

shaalaa.com
चक्रीय चतुर्भुज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: वृत्त - प्रश्नावली 10.6 (ऐच्छिक) [पृष्ठ २२३]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 10 वृत्त
प्रश्नावली 10.6 (ऐच्छिक) | Q 2. | पृष्ठ २२३

संबंधित प्रश्‍न

यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।


यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।


यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।


सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।


एक वृत्त की दो समानांतर जीवाओं की लंबाई 6 सेमी और 8 सेमी है। यदि छोटी जीवा केंद्र से 4 सेमी की दूरी पर है, तो केंद्र से दूसरी जीवा की दूरी क्या है?


ABCD एक समांतर चतुर्भुज है। A, B और C से होकर जाने वाला वृत्त, CD (यदि आवश्यक हो तो) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।


AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:
(I) AC और BD व्यास हैं,
(Ii) ABCD एक आयत है।


एक त्रिभुज ABC के कोण A, B और C के समद्विभाजक इसके परिवृत्त को क्रमशः D, E और F पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि त्रिभुज DEF के कोण हैं `90^@-1/2A, 90^@-1/2B" तथा "90^@-1/2C` हैं


दो सर्वांगसम वृत्त परस्पर बिंदुओं A और B पर प्रतिच्छेद करते हैं। A से होकर कोई रेखाखंड PAQ इस प्रकार खींचा गया है कि P और Q दोनों वृत्तों पर स्थित हैं। सिद्ध कीजिए कि BP = BQ है।


ABCD एक चक्रीय चतुर्भुज है, जिसमें ∠A = 90°, ∠B = 70°, ∠C = 95° और ∠D = 105° है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×