मराठी

AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:(I) AC और BD व्यास हैं,(Ii) ABCD एक आयत है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:
(I) AC और BD व्यास हैं,
(Ii) ABCD एक आयत है।

बेरीज

उत्तर

मान लीजिए कि दो जीवाएँ AB और CD एक दूसरे को बिंदु O पर काट रही हैं।

In ΔAOB तथा ΔCOD,

OA = OC (दिया गया)

OB = OD (दिया गया)

∠AOB = ∠COD (लंबवत विपरीत कोण)

ΔAOB ≅ ΔCOD (SAS सर्वांगसमता नियम)

AB = CD (By CPCT)

इसी प्रकार, यह सिद्ध किया जा सकता है कि ΔAOD ≅ ΔCOB

∴ AD = CB (By CPCT)

चूँकि चतुर्भुज ACBD में, सम्मुख भुजाएँ लंबाई में बराबर होती हैं, ACBD एक समांतर चतुर्भुज है।

हम जानते हैं कि समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।

∴ ∠A = ∠C

हालाँकि, A + C = 180° (ABCD एक चक्रीय चतुर्भुज है)

⇒ ∠A + ∠A = 180°

⇒ 2 ∠A = 180°

⇒ ∠A = 90°

चूँकि ACBD एक समांतर चतुर्भुज है और इसका एक आंतरिक कोण 90° का है, इसलिए यह एक आयत है।

∠A जीवा BD द्वारा अंतरित कोण है। और चूँकि ∠A = 90° है, इसलिए BD वृत्त का व्यास होना चाहिए। इसी प्रकार, AC वृत्त का व्यास है।

shaalaa.com
चक्रीय चतुर्भुज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: वृत्त - प्रश्नावली 10.6 (ऐच्छिक) [पृष्ठ २२३]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 10 वृत्त
प्रश्नावली 10.6 (ऐच्छिक) | Q 7. | पृष्ठ २२३

संबंधित प्रश्‍न

यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।


उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD = ∠CBD हैं।


सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केंद्रों की रेखा प्रतिच्छेदन के दो बिंदुओं पर समान कोण अंतरित करती है।


एक वृत्त की क्रमशः 5 सेमी 11 सेमी लम्बाई की दो जीवाएँ AB और CD एक दूसरे के समानांतर हैं और इसके केंद्र के विपरीत दिशा में हैं। यदि AB और CD के बीच की दूरी 6 सेमी है, तो वृत्त की त्रिज्या ज्ञात कीजिए।


सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेदन बिंदु से होकर गुजरता है।


ABCD एक समांतर चतुर्भुज है। A, B और C से होकर जाने वाला वृत्त, CD (यदि आवश्यक हो तो) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।


ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।


यदि किसी समद्विबाहु त्रिभुज के आधार के समांतर कोई रेखा उसकी बराबर भुजाओं को प्रतिच्छेद करने के लिए खींची जाए, तो सिद्ध कीजिए कि इस प्रकार बना चतुर्भुज चक्रीय होता है।


यदि किसी चक्रीय चतुर्भुज की सम्मुख भुजाओं का एक युग्म बराबर है, तो सिद्ध कीजिए कि इसके विकर्ण भी बराबर हैं।


यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि यह एक चक्रीय है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×