मराठी

यदि किसी समद्विबाहु त्रिभुज के आधार के समांतर कोई रेखा उसकी बराबर भुजाओं को प्रतिच्छेद करने के लिए खींची जाए, तो सिद्ध कीजिए कि इस प्रकार बना चतुर्भुज चक्रीय होता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि किसी समद्विबाहु त्रिभुज के आधार के समांतर कोई रेखा उसकी बराबर भुजाओं को प्रतिच्छेद करने के लिए खींची जाए, तो सिद्ध कीजिए कि इस प्रकार बना चतुर्भुज चक्रीय होता है।

बेरीज

उत्तर

दिया गया है - ΔABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC और DE || BC है।

सिद्ध करना है - चतुर्भुज BCDE एक चक्रीय चतुर्भुज है।

रचना - बिंदुओं B, C, D और E से होकर जाने वाला एक वृत्त खींचिए।


प्रमाण - ΔABC में, AB = AC  ...[एक समद्विबाहु त्रिभुज की समान भुजाएँ]

⇒ ∠ACB = ∠ABC  ...(i)

चूंकि, DE || BC  ...[समान भुजाओं के सम्मुख कोण बराबर होते हैं।]

⇒ ∠ADE = ∠ACB [संगत कोण]  ...(ii)

समीकरण (ii) में दोनों पक्षों को ∠EDC से जोड़ने पर, हम पाते हैं।

∠ADE + ∠EDC = ∠ACB + ∠EDC

⇒ 180° = ∠ACB + ∠EDC  ...[∠ADE और ∠EDC रैखिक युग्म एनिओम से]

⇒ ∠EDC + ∠ABC = 180°  ...[समीकरण (i) से]

अत:, BCDE एक चक्रीय चतुर्भुज है, क्योंकि सम्मुख कोणों का योग 180° होता है।

shaalaa.com
चक्रीय चतुर्भुज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: वृत्त - प्रश्नावली 10.3 [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 10 वृत्त
प्रश्नावली 10.3 | Q 11. | पृष्ठ १०४

संबंधित प्रश्‍न

यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।


दो वृत्त दो बिन्दुओं B और C पर प्रतिच्छेद करते हैं । B से जाने वाले दो रेखाखंड ABD और PBQ वृतों को A, D और P, Q पर क्रमश: प्रतिछेद करते हुए खींचे गए हैं (देखिए आकृति में)। सिद्ध कीजिए कि ∠ACP = ∠QCD है।


यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।


उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠CAD = ∠CBD हैं।


सिद्ध कीजिए कि एक चक्रीय समांतर चतुर्भुज एक आयत होता है।


एक वृत्त की क्रमशः 5 सेमी 11 सेमी लम्बाई की दो जीवाएँ AB और CD एक दूसरे के समानांतर हैं और इसके केंद्र के विपरीत दिशा में हैं। यदि AB और CD के बीच की दूरी 6 सेमी है, तो वृत्त की त्रिज्या ज्ञात कीजिए।


सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भुजा को व्यास मानकर खींचा गया वृत्त उसके विकर्णों के प्रतिच्छेदन बिंदु से होकर गुजरता है।


ABCD एक समांतर चतुर्भुज है। A, B और C से होकर जाने वाला वृत्त, CD (यदि आवश्यक हो तो) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।


AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित होती हैं। सिद्ध कीजिए:
(I) AC और BD व्यास हैं,
(Ii) ABCD एक आयत है।


ABCD एक ऐसा चतुर्भुज है कि A शीर्षों B, C और D से होकर जाने वाले वृत्त का केंद्र है। सिद्ध कीजिए कि ∠CBD + ∠CDB = `1/2` ∠BAD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×