मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Equal Masses of Air Are Sealed in Two Vessels, One of Volume V0 and the Other of Volume 2v0. If the First Vessel is Maintained at a Temperature 300 K - Physics

Advertisements
Advertisements

प्रश्न

Equal masses of air are sealed in two vessels, one of volume V0 and the other of volume 2V0. If the first vessel is maintained at a temperature 300 K and the other at 600 K, find the ratio of the pressures in the two vessels.

Use R = 8.31 JK-1 mol-1

बेरीज

उत्तर

Let the pressure and temperature for the vessels of volume V0 and 2V0 be P1, T1 and P2 , T2, respectively.
Since the two vessels have the same mass of gasn1 = n2 = n.

\[T_1  = 300  K\] 

\[ T_2    =   600  K\] 

\[\text { Using  the  equation  of  state  for  perfect  gas,   we  get }\] \[PV = nRT\] 

\[\text { For  the  vessel  of  volume   V}_o : \] 

\[ P_1  V_o  = nR T_1                                                                        .  .  . \left( 1 \right)\] 

\[\text { For  the  vessel  of  volume  2 V}_o : \] 

\[ P_2 \left( 2 V_o \right) = nR T_2                                                                .  .  . \left( 2 \right)\] 

\[\text { Dividing  eq . }  \left( 2 \right) \text { by  eq .  } \left( 1 \right),   \text { we  get }\] 

\[\frac{2 P_2}{P_1} = \frac{T_2}{T_1} = \frac{600}{300} = 2\] 

\[ \Rightarrow \frac{P_2}{P_1} = 1\] 

\[ \Rightarrow  P_2 :  P_1  = 1: 1\]

shaalaa.com
Kinetic Theory of Gases - Concept of Pressure
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 2 Kinetic Theory of Gases
Exercises | Q 5 | पृष्ठ ३४

संबंधित प्रश्‍न

A gas is kept in a rigid cubical container. If a load of 10 kg is put on the top of the container, does the pressure increase?


If it were possible for a gas in a container to reach the temperature 0 K, its pressure would be zero. Would the molecules not collide with the walls? Would they not transfer momentum to the walls?


A gas behaves more closely as an ideal gas at


The pressure of a gas kept in an isothermal container is 200 kPa. If half the gas is removed from it, the pressure will be


2 g of hydrogen is sealed in a vessel of volume 0.02 m3 and is maintained at 300 K. Calculate the pressure in the vessel.

Use R=8.3J K-1 mol-1


Figure shows a cylindrical tube with adiabatic walls and fitted with a diathermic separator. The separator can be slid in the tube by an external mechanism. An ideal gas is injected into the two sides at equal pressures and equal temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio of 1:3. Find the ratio of the pressures in the two parts of the vessel.

Use R=8.314J K-1 mol-1


A vessel contains 1.60 g of oxygen and 2.80 g of nitrogen. The temperature is maintained at 300 K and the volume of the vessel is 0.166 m3. Find the pressure of the mixture.

Use R = 8.3 J K-1 mol-1


In an adiabatic process on a gas with γ = 1.4, the pressure is increased by 0.5%. The volume decreases by about


An ideal gas is kept in a long cylindrical vessel fitted with a frictionless piston of cross-sectional area 10 cm2 and weight 1 kg. The length of the gas column in the vessel is 20 cm. The atmospheric pressure is 100 kPa. The vessel is now taken into a spaceship revolving round the earth as a satellite. The air pressure in the spaceship is maintained at 100 kPa. Find the length of the gas column in the cylinder.

Use R = 8.3 J K-1 mol-1


A gas is enclosed in a cylindrical can fitted with a piston. The walls of the can and the piston are adiabatic. The initial pressure, volume and temperature of the gas are 100 kPa, 400 cm3 and 300 K, respectively. The ratio of the specific heat capacities of  the gas, Cp / Cv = 1.5. Find the pressure and the temperature of the gas if it is (a) suddenly compressed (b) slowly compressed to 100 cm3.


The initial pressure and volume of a given mass of a gas (Cp/Cv = γ) are p0 and V0. The gas can exchange heat with the surrounding. (a) It is slowly compressed to a volume V0/2 and then suddenly compressed to V0/4. Find the final pressure. (b) If the gas is suddenly compressed from the volume V0 to V0/2 and then slowly compressed to V0/4, what will be the final pressure?


Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at 0°C at a pressure of 76 cm of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at 62°C. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.


Three samples A, B and C of the same gas (γ = 1.5) have equal volumes and temperatures. The volume of each sample is doubled, the process being isothermal for A, adiabatic for B and isobaric for C. If the final pressures are equal for the three samples, find the ratio of the initial pressures.


The human body has an average temperature of 98°F. Assume that the vapour pressure of the blood in the veins behaves like that of pure water. Find the minimum atmospheric pressure which is necessary to prevent the blood from boiling. Use figure for the vapour pressures.


A barometer correctly reads the atmospheric pressure as 76 cm of mercury. Water droplets are slowly introduced into the barometer tube by a dropper. The height of the mercury column first decreases and then becomes constant. If the saturation vapour pressure at the atmospheric temperature is 0.80 cm of mercury, find the height of the mercury column when it reaches its minimum value.


A faulty barometer contains certain amount of air and saturated water vapour. It reads 74.0 cm when the atmospheric pressure is 76.0 cm of mercury and reads 72.10 cm when the atmospheric pressure is 74.0 cm of mercury. Saturation vapour pressure at the air temperature = 1.0 cm of mercury. Find the length of the barometer tube above the mercury level in the reservoir.


On a winter day, the outside temperature is 0°C and relative humidity 40%. The air from outside comes into a room and is heated to 20°C. What is the relative humidity in the room? The saturation vapour pressure at 0°C is 4.6 mm of mercury and at 20°C it is 18 mm of mercury.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×