मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Figure Shows a Cylindrical Tube with Adiabatic Walls and Fitted with a Diathermic Separator. the Separator Can Be Slid in the Tube by an External Mechanism. an Ideal Gas is Injected - Physics

Advertisements
Advertisements

प्रश्न

Figure shows a cylindrical tube with adiabatic walls and fitted with a diathermic separator. The separator can be slid in the tube by an external mechanism. An ideal gas is injected into the two sides at equal pressures and equal temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio of 1:3. Find the ratio of the pressures in the two parts of the vessel.

Use R=8.314J K-1 mol-1

बेरीज

उत्तर

Since the separator initially divides the cylinder equally, the number of moles of gas are equal in the two parts. Thus,
n= n2= n

​Volume of the first part = V
Volume of the second part =​3V

It is given that the walls are diathermic. So, temperature of the two parts is equal. Thus,
T1 = T2 = T
Let pressure of first and second parts be P1 and P2, respectively.

For first part:- Applying equation of state, we get

\[ P_1 V = nRT   ..........\left( 1 \right)\]

For second part:- Applying equation of state, we get

\[ P_2 \left( 3V \right) = nRT  .............\left( 2 \right)        \] 

Dividing  eq. (1) by eq. (2), we get

\[\frac{P_1 V}{P_2 \left( 3V \right)} = 1\]

\[ \Rightarrow \frac{P_1}{P_2} = \frac{3}{1}\]

\[ \Rightarrow  P_1 :  P_2  = 3: 1\]

shaalaa.com
Kinetic Theory of Gases - Concept of Pressure
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 2 Kinetic Theory of Gases
Exercises | Q 11 | पृष्ठ ३४

संबंधित प्रश्‍न

From a certain apparatus, the diffusion rate of hydrogen has an average value of 28.7 cm3 s–1. The diffusion of another gas under the same conditions is measured to have an average rate of 7.2 cm3 s–1. Identify the gas

[Hint: Use Graham’s law of diffusion: R1/R2 = (M2/M1)1/2, where R1, R2 are diffusion rates of gases 1 and 2, and M1 and M2 their respective molecular masses. The law is a simple consequence of kinetic theory.]


While gas from a cooking gas cylinder is used, the pressure does not fall appreciably till the last few minutes. Why?


A gas is kept in a rigid cubical container. If a load of 10 kg is put on the top of the container, does the pressure increase?


If it were possible for a gas in a container to reach the temperature 0 K, its pressure would be zero. Would the molecules not collide with the walls? Would they not transfer momentum to the walls?


Explain why cooking is faster in a pressure cooker.


Figure shows graphs of pressure vs density for an ideal gas at two temperatures T1 and T2.


2 g of hydrogen is sealed in a vessel of volume 0.02 m3 and is maintained at 300 K. Calculate the pressure in the vessel.

Use R=8.3J K-1 mol-1


Air is pumped into an automobile tyre's tube up to a pressure of 200 kPa in the morning when the air temperature is 20°C. During the day the temperature rises to 40°C and the tube expands by 2%. Calculate the pressure of the air in the tube at this temperature.


A container of volume 50 cc contains air (mean molecular weight = 28.8 g) and is open to atmosphere where the pressure is 100 kPa. The container is kept in a bath containing melting ice (0°C). (a) Find the mass of the air in the container when thermal equilibrium is reached. (b) The container is now placed in another bath containing boiling water (100°C). Find the mass of air in the container. (c) The container is now closed and placed in the melting-ice bath. Find the pressure of the air when thermal equilibrium is reached.

Use R = 8.3 J K-1 mol-1


Is a slow process always isothermal? Is a quick process always adiabatic?


An ideal gas is kept in a long cylindrical vessel fitted with a frictionless piston of cross-sectional area 10 cm2 and weight 1 kg. The length of the gas column in the vessel is 20 cm. The atmospheric pressure is 100 kPa. The vessel is now taken into a spaceship revolving round the earth as a satellite. The air pressure in the spaceship is maintained at 100 kPa. Find the length of the gas column in the cylinder.

Use R = 8.3 J K-1 mol-1


The initial pressure and volume of a given mass of a gas (Cp/Cv = γ) are p0 and V0. The gas can exchange heat with the surrounding. (a) It is slowly compressed to a volume V0/2 and then suddenly compressed to V0/4. Find the final pressure. (b) If the gas is suddenly compressed from the volume V0 to V0/2 and then slowly compressed to V0/4, what will be the final pressure?


Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at 0°C at a pressure of 76 cm of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at 62°C. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.


Three samples A, B and C of the same gas (γ = 1.5) have equal volumes and temperatures. The volume of each sample is doubled, the process being isothermal for A, adiabatic for B and isobaric for C. If the final pressures are equal for the three samples, find the ratio of the initial pressures.


A barometer tube is 80 cm long (above the mercury reservoir). It reads 76 cm on a particular day. A small amount of water is introduced in the tube and the reading drops to 75.4 cm. Find the relative humidity in the space above the mercury column if the saturation vapour pressure at the room temperature is 1.0 cm.


The human body has an average temperature of 98°F. Assume that the vapour pressure of the blood in the veins behaves like that of pure water. Find the minimum atmospheric pressure which is necessary to prevent the blood from boiling. Use figure for the vapour pressures.


The temperature and humidity of air are 27°C and 50% on a particular day. Calculate the amount of vapour that should be added to 1 cubic metre of air to saturate it. The saturation vapour pressure at 27°C = 3600 Pa.

Use R = 8.3 J K-1 mol-1


The temperature and relative humidity in a room are 300 K and 20% respectively. The volume of the room is 50 m3. The saturation vapour pressure at 300 K 3.3 kPa. Calculate the mass of the water vapour present in the room.

Use R = 8.3 J K-1 mol-1


Air separated from the atmosphere by a column of mercury of length h = 15 cm is present in a narrow cylindrical two-soldered at one end. When the tube is placed horizontally the air occupies a volume V1 = 240 mm3. When it is set vertically with its open end upwards the volume of the air is V2 = 200 mm3. The atmospheric pressure during the experiment is 7n cm of Hg where n is a single digit number. n will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×