हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Figure Shows a Cylindrical Tube with Adiabatic Walls and Fitted with a Diathermic Separator. the Separator Can Be Slid in the Tube by an External Mechanism. an Ideal Gas is Injected - Physics

Advertisements
Advertisements

प्रश्न

Figure shows a cylindrical tube with adiabatic walls and fitted with a diathermic separator. The separator can be slid in the tube by an external mechanism. An ideal gas is injected into the two sides at equal pressures and equal temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio of 1:3. Find the ratio of the pressures in the two parts of the vessel.

Use R=8.314J K-1 mol-1

योग

उत्तर

Since the separator initially divides the cylinder equally, the number of moles of gas are equal in the two parts. Thus,
n= n2= n

​Volume of the first part = V
Volume of the second part =​3V

It is given that the walls are diathermic. So, temperature of the two parts is equal. Thus,
T1 = T2 = T
Let pressure of first and second parts be P1 and P2, respectively.

For first part:- Applying equation of state, we get

\[ P_1 V = nRT   ..........\left( 1 \right)\]

For second part:- Applying equation of state, we get

\[ P_2 \left( 3V \right) = nRT  .............\left( 2 \right)        \] 

Dividing  eq. (1) by eq. (2), we get

\[\frac{P_1 V}{P_2 \left( 3V \right)} = 1\]

\[ \Rightarrow \frac{P_1}{P_2} = \frac{3}{1}\]

\[ \Rightarrow  P_1 :  P_2  = 3: 1\]

shaalaa.com
Kinetic Theory of Gases - Concept of Pressure
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 2 Kinetic Theory of Gases
Exercises | Q 11 | पृष्ठ ३४

संबंधित प्रश्न

A gas behaves more closely as an ideal gas at


Equal masses of air are sealed in two vessels, one of volume V0 and the other of volume 2V0. If the first vessel is maintained at a temperature 300 K and the other at 600 K, find the ratio of the pressures in the two vessels.

Use R = 8.31 JK-1 mol-1


Air is pumped into an automobile tyre's tube up to a pressure of 200 kPa in the morning when the air temperature is 20°C. During the day the temperature rises to 40°C and the tube expands by 2%. Calculate the pressure of the air in the tube at this temperature.


A vessel contains 1.60 g of oxygen and 2.80 g of nitrogen. The temperature is maintained at 300 K and the volume of the vessel is 0.166 m3. Find the pressure of the mixture.

Use R = 8.3 J K-1 mol-1


A container of volume 50 cc contains air (mean molecular weight = 28.8 g) and is open to atmosphere where the pressure is 100 kPa. The container is kept in a bath containing melting ice (0°C). (a) Find the mass of the air in the container when thermal equilibrium is reached. (b) The container is now placed in another bath containing boiling water (100°C). Find the mass of air in the container. (c) The container is now closed and placed in the melting-ice bath. Find the pressure of the air when thermal equilibrium is reached.

Use R = 8.3 J K-1 mol-1


Is a slow process always isothermal? Is a quick process always adiabatic?


In an adiabatic process on a gas with γ = 1.4, the pressure is increased by 0.5%. The volume decreases by about


A vessel of volume V0 contains an ideal gas at pressure p0 and temperature T. Gas is continuously pumped out of this vessel at a constant volume-rate dV/dt = r keeping the temperature constant. The pressure of the gas being taken out equals the pressure inside the vessel. Find (a) the pressure of the gas as a function of time, (b) the time taken before half the original gas is pumped out.

Use R = 8.3 J K−1 mol−1


A gas is enclosed in a cylindrical can fitted with a piston. The walls of the can and the piston are adiabatic. The initial pressure, volume and temperature of the gas are 100 kPa, 400 cm3 and 300 K, respectively. The ratio of the specific heat capacities of  the gas, Cp / Cv = 1.5. Find the pressure and the temperature of the gas if it is (a) suddenly compressed (b) slowly compressed to 100 cm3.


The initial pressure and volume of a given mass of a gas (Cp/Cv = γ) are p0 and V0. The gas can exchange heat with the surrounding. (a) It is slowly compressed to a volume V0/2 and then suddenly compressed to V0/4. Find the final pressure. (b) If the gas is suddenly compressed from the volume V0 to V0/2 and then slowly compressed to V0/4, what will be the final pressure?


Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at 0°C at a pressure of 76 cm of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at 62°C. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.


The human body has an average temperature of 98°F. Assume that the vapour pressure of the blood in the veins behaves like that of pure water. Find the minimum atmospheric pressure which is necessary to prevent the blood from boiling. Use figure for the vapour pressures.


The temperature and relative humidity in a room are 300 K and 20% respectively. The volume of the room is 50 m3. The saturation vapour pressure at 300 K 3.3 kPa. Calculate the mass of the water vapour present in the room.

Use R = 8.3 J K-1 mol-1


The temperature and the relative humidity are 300 K and 20% in a room of volume 50 m3. The floor is washed with water, 500 g of water sticking on the floor. Assuming no communication with the surrounding, find the relative humidity when the floor dries. The changes in temperature and pressure may be neglected. Saturation vapour pressure at 300 K = 3.3 kPa.

Use R = 8.31 J K-1 mol-1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×