Advertisements
Advertisements
प्रश्न
Evaluate : `∫((1 + logx))/(x(2 + logx)(3 + logx)`dx
उत्तर
Let I = `∫((1 + logx))/(x(2 + logx)(3 + logx)`dx
Put logx = t
`(1/x)dx = dt`
∴ I = `∫(1 + t)/((2 + t)(3 + t))dt` ....(i)
By partial fraction
`(1 + t)/((2 + t)(3 + t)) = A/(2 + t) + B/(3 + t)`
1 + t = A(3 + t) + B(2 + t) .....(ii)
Put t = -2 in equation (ii)
1 + (-2) = A(3 - 2) + B[2 + (-2)]
-1 = A + 0
∴ A = -1
Put t = -3 in equation (ii)
1 + (-3) = A[3 + (-3)] + B[2 + (-3)]
-2 = 0 - B
∴ B = 2
Putting A = -1 , B = 2 we get
`(1 + t)/((2 + t)(3 + t)) = (-1)/(2 + t) + 2/(3 + t)`
∴ Equation (i) becomes
I = `∫((-1)/(2 + t) + 2/(3 + t))` dt
= `-∫dt/(2 + t) + 2∫dt/(3 + t)`
∴ I = -log|2 + t| + 2 log|3 + t| + C
= -log|2 + logx| + 2 log|3 + logx| + C
= `log|(3 + logx)^2/(2 + logx)|` + C
APPEARS IN
संबंधित प्रश्न
evaluate : `int xcosxdx`
Evaluate :`int_0^(pi/2)dx/(1+cotx)`
Evaluate : `int (2"x" + 1)/(("x" + 1)("x"-2)) "dx"`
If the function f is continuous at x = 2 and x = 4 then find the values of a and b.
Where f(x) = x2 + ax + b, x < 2
= 3x + 2, 2 ≤ x ≤ 4
= 2ax + 5b, 4 < x
Evaluate ; `int x^2/(x^6 - 4x^3 + 13)` dx
`int (2x + 1)/((x + 1) ( x - 2))` dx
Evaluate : `int x cosx dx`