Advertisements
Advertisements
प्रश्न
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
उत्तर
`3^3 xx ( 243 )^(-2/3) xx 9^(1/3)`
= `3^3 xx ( 3 xx 3 xx 3 xx 3 xx 3 )^( - 2/3 ) xx ( 3 xx 3 )^( -1/3 )`
= `3^3 xx ( 3^5 )^( - 2/3 ) xx ( 3^2 )^(1/3)`
= `3^3 xx 3^( - 10/3 ) xx 3^( -2/3 ) ...[( a^m )^n = a^( mn )]`
= `3^( 3 - 10/3 - 2/3 ) [ a^m xx a^n xx a^o = a^( m + n + o )]`
=`3^([ 9 - 10 - 2]/3)`
= `3^( [9 - 12]/3 )`
= `3^( - 3/3 )`
= `3^-1`
= `1/3`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(3^2)^2`
Find the value of 10−3.
Find the value of (23)2.