Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
उत्तर
`([27^-3]/[9^-3])^(1/5)`
= `( 9^3/27^3)^(1/5)`
= `[(3^2)^3/(3^3)^3]^(1/5)`
= `[(3^2/3^3)^3]^(1/5)`
= `[(1/3)^3]^(1/5)`
= `(1/3)^( 3 xx 1/5 )`
= `1/(3)^(3/5)`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Evaluate the following: `(3^2)^2`