Advertisements
Advertisements
प्रश्न
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
उत्तर
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
= `1/( a + b ) xx ( 1/a + 1/b )`
= `1/( a + b ) xx ([ b + a ]/[ ab ] )`
= `1/( a + b ) xx ( a + b )/(ab)`
= `1/(ab)`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
`[(3/7)^-3]^4` = ______