Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
उत्तर
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
= `[1 - { 1 - 1/( 1 - n ) }^-1]^-1`
= `[1 - { (1-n-1)/( 1 - n ) }^-1]^-1`
= `[1 - { (-n)/( 1 - n ) }^-1]^-1`
= `[1 - { (1-n)/(- n ) }]^-1`
= `[ (-n- 1 + n )/-n ]^-1`
= `[(-1)/-n]^-1`
= n
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
Evaluate the following: `(2^3)^2`
Evaluate the following: `(3^2)^2`
`[(3/7)^-3]^4` = ______