Advertisements
Advertisements
प्रश्न
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
उत्तर
`( 27/8 )^(2/3) - (1/4)^(-2) + 5^0`
= `([ 3 xx 3 xx 3]/[ 2 xx 2 xx 2 ])^(2/3) - ([ 1 xx 1 ]/[ 2 xx 2 ])^-2 + 5^0`
= `[(3/2)^3]^(2/3) - [(1/2)^2]^-2 + 1`
= `(3/2)^( 3 xx 2/3 ) - (1/2)^[2 xx ( - 2)] + 1`
= `(3/2)^2 - (1/2)^-4 + 1`
= `3/2 xx 3/2 - 1/[(1/2)^4] + 1`
= `9/4 - 1/[ 1/2 xx 1/2 xx 1/2 xx 1/2 ] + 1`
= `9/4 - 1/[1/16] + 1`
= `9/4 - 16 + 1`
= `[ 9 - 64 + 4 ]/4`
= `(-51)/4`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Evaluate the following: `(2^3)^2`
`[(3/7)^-3]^4` = ______