Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
उत्तर
`(32)^(-2/5) ÷ (125)^(-2/3)`
= `[(32)^(-2/5)/(125)^(-2/3)]`
= `(125)^(2/3)/(32)^(2/5)`
= `( 5 xx 5 xx 5 )^(2/3)/( 2 xx 2 xx 2 xx 2 xx 2 )^(2/5)`
= `(5^3)^(2/3)/(2^5)^(2/5)`
= `5^2/2^2`
= `25/4`
= `(5/2)^2`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Find the value of 10−3.
`[(3/7)^-3]^4` = ______