Advertisements
Advertisements
Question
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
Solution
`(32)^(-2/5) ÷ (125)^(-2/3)`
= `[(32)^(-2/5)/(125)^(-2/3)]`
= `(125)^(2/3)/(32)^(2/5)`
= `( 5 xx 5 xx 5 )^(2/3)/( 2 xx 2 xx 2 xx 2 xx 2 )^(2/5)`
= `(5^3)^(2/3)/(2^5)^(2/5)`
= `5^2/2^2`
= `25/4`
= `(5/2)^2`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
Evaluate the following: `(2^3)^2`
Find the value of (23)2.