Advertisements
Advertisements
Question
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Solution
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
= `(3xx27^n.27+9xx3^(3n).3^-1)/(8xx(3^3)^n-5xx(3^3)^n)`
= `(27^nxx81+9xx27^n.3^-1)/(8xx27^n-5xx27^n)`
= `(27^n[81+9xx3^-1])/(27^n[8-5])`
= `([81+9xx1/3])/3`
= `[ 81 + 3 ]/3`
= `84/3`
= 28
APPEARS IN
RELATED QUESTIONS
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(3^2)^2`