English

Simplify the following and express with positive index: [1-{1-(1-n)-1}-1]-1 - Mathematics

Advertisements
Advertisements

Question

Simplify the following and express with positive index:

`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`

Sum

Solution

`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`

= `[1 - { 1 - 1/( 1 - n ) }^-1]^-1`

= `[1 - {  (1-n-1)/( 1 - n ) }^-1]^-1`

= `[1 - {  (-n)/( 1 - n ) }^-1]^-1`

= `[1 - {  (1-n)/(- n ) }]^-1`

= `[ (-n- 1 + n )/-n ]^-1`

= `[(-1)/-n]^-1`

= n

shaalaa.com
Laws of Exponents
  Is there an error in this question or solution?
Chapter 7: Indices (Exponents) - Exercise 7 (A) [Page 98]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 7 Indices (Exponents)
Exercise 7 (A) | Q 4.4 | Page 98
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×