Advertisements
Advertisements
Question
`[(3/7)^-3]^4` = ______
Options
`(3/7)^-7`
`(3/7)^-10`
`(7/3)^12`
`(3/7)^20`
Solution
`[(3/7)^-3]^4 = bbunderline((7/3)^12)`
Explanation:
`[(3/7)^-3]^4 = (3/7)^(-3(4))` ...[∵ (am)n = amn]
`= (3/7)^-12`
`= (7/3)^12` ....`[∵ (a)^-"n" = 1/"a"^"n"]`
RELATED QUESTIONS
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
Evaluate the following: `(3^2)^2`