Advertisements
Advertisements
Question
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Solution
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
= `5^(-4) xx ( 5 xx 5 xx 5 )^(5/3) ÷ ( 5 xx 5 )^(-1/2)`
= `5^(-4) xx ( 5^3 )^(5/3) ÷ ( 5^2 )^(-1/2)`
= `5^(-4) xx [( 5)^[3 xx 5/3]] ÷[ ( 5)^[2 xx -1/2]]`
= `[ 5^(-4) xx 5^(5)]/5^(-1)`
= `[5^( 5 - 4 )]/[5^(-1)]`
= `[5^1]/[5^-1]`
= `5^[ 1 - (- 1)]`
= `5^2`
= 5 x 5
=25
APPEARS IN
RELATED QUESTIONS
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Evaluate the following: `(2^3)^2`
Evaluate the following: `(3^2)^2`