Advertisements
Advertisements
Question
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Solution
`(3^-4/2^-8)^(1/4)`
= `( 2^8/3^4)^(1/4)`
= `[(2^8)^(1/4)]/[(3^4)^(1/4)]`
= `[2^( 8 xx 1/4 )]/[ 3^( 4 xx 1/4 )]`
= `2^2/3`
= `4/3`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
Find the value of 46 × 4−4.
`[(3/7)^-3]^4` = ______