Advertisements
Advertisements
Question
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Solution
`([27^-3]/[9^-3])^(1/5)`
= `( 9^3/27^3)^(1/5)`
= `[(3^2)^3/(3^3)^3]^(1/5)`
= `[(3^2/3^3)^3]^(1/5)`
= `[(1/3)^3]^(1/5)`
= `(1/3)^( 3 xx 1/5 )`
= `1/(3)^(3/5)`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(2^3)^2`
Find the value of (23)2.