Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
योग
उत्तर
`(3^-4/2^-8)^(1/4)`
= `( 2^8/3^4)^(1/4)`
= `[(2^8)^(1/4)]/[(3^4)^(1/4)]`
= `[2^( 8 xx 1/4 )]/[ 3^( 4 xx 1/4 )]`
= `2^2/3`
= `4/3`
shaalaa.com
Laws of Exponents
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Find the value of 10−3.
Find the value of (23)2.