Advertisements
Advertisements
प्रश्न
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
उत्तर
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
= `( a^m xx a^n )^( m - n ) xx ( a^n xx a^l )^( n - l ) xx ( a^l xx a^m )^( l - m )`
= `( a^(m + n))^( m - n ) xx ( a^( n + l ))^( n - l ) xx ( a^( l + m ))^( l - m )`
= `a^( m^2 - n^2 ) xx a^( n^2 - l^2 ) xx a^( l^2 - m^2 )`
= `a^( m^2 - n^2 + n^2 - l^2 + l^2 - m^2 )`
= `a^0`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(3^2)^2`