Advertisements
Advertisements
प्रश्न
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
उत्तर
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
= `sqrt( 1/2 xx 1/2 ) + ( 0.1 xx 0.1 )^(-1/2) - ( 3 xx 3 xx 3)^(2/3)`
= `1/2 + [(0.1)^2]^(-1/2) - (3^2)^(2/3)`
= `1/2 + ( 0.1 )^( 2 xx (-1/2)) - 3 xx ( 3 xx 2/3 )`
= `1/2 + ( 0.1 )^( - 1) - 3^2`
= `1/2 + 1/0.1 - 9`
= `1/2 + 10/1 - 9`
= `[ 1 + 20 - 18 ]/2`
= `3/2`
= `1 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Find the value of 10−3.