Advertisements
Advertisements
प्रश्न
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
उत्तर
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
= `( x^( a - b ))^(a^2 + ab + b^2) xx ( x^(b - c))^(b^2 + bc + c^2 ) xx ( x^( c - a ))^( c^2 + ca + a^2)`
= `x^( a^3 - b^3) xx x^(b^3 - c^3 ) xx x^(c^3 - a^3)`
= `x^( a^3 - b^3 + b^3 - c^3 + c^3 -a^3)`
= `x^0`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify:
`[ 3 xx 27^( n + 1 ) + 9 xx 3^(3n - 1 )]/[ 8 xx 3^(3n) - 5 xx 27^n ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(3^2)^2`
Find the value of (23)2.
Find the value of 46 × 4−4.