Advertisements
Advertisements
प्रश्न
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
उत्तर
2160 = 2a x 3b x 5c
⇒ 2 x 2 x 2 x 2 x 3 x 3 x 3 x 5 = 2a x 3b x 5c
⇒ 24 x 33 x 51 = 2a x 3b x 5c
⇒ 2a x 3b x 5c = 24 x 33 x 51
Comparing powers of 2, 3 and 5 on the both sides of equation, We have
a = 4; b = 3 and c = 1
Hence,
Value of 3a x 2-b x 5-c
= 34 x 2-3 x 5-1
= 3 x 3 x 3 x 3 x `1/2^3 xx 1/5`
= `81 xx 1/[ 2 xx 2 xx 2 ] xx 1/5`
= `81 xx 1/8 xx 1/5`
= `81/40`
= `2 1/40`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Evaluate the following: `(3^2)^2`
Find the value of (23)2.