Advertisements
Advertisements
प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
उत्तर
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
= `5^(-4) xx ( 5 xx 5 xx 5 )^(5/3) ÷ ( 5 xx 5 )^(-1/2)`
= `5^(-4) xx ( 5^3 )^(5/3) ÷ ( 5^2 )^(-1/2)`
= `5^(-4) xx [( 5)^[3 xx 5/3]] ÷[ ( 5)^[2 xx -1/2]]`
= `[ 5^(-4) xx 5^(5)]/5^(-1)`
= `[5^( 5 - 4 )]/[5^(-1)]`
= `[5^1]/[5^-1]`
= `5^[ 1 - (- 1)]`
= `5^2`
= 5 x 5
=25
APPEARS IN
संबंधित प्रश्न
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Evaluate the following: `(3^2)^2`