Advertisements
Advertisements
प्रश्न
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
उत्तर
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
= `([ 3 xx 3 xx 3 ]/[ 5xx 5 xx 5 ])^(2/3) xx ([ 3 xx 3 ]/[ 5 xx 5 ])^( -3/2 )`
= `[(3/5)^3 ]^(2/3) xx [(3/5)^2]^(-3/2)`
= `(3/5)^( 3 xx 2/3 ) xx (3/5)^( 2 xx - 3/2)`
= `(3/5)^2 xx (3/5)^(-3)`
= `(3/5)^( 2 - 3 )`
= `(3/5)^( -1 )`
= `1/(3/5)`
`= 5/3`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1