Advertisements
Advertisements
प्रश्न
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
उत्तर
`7^0 xx (25)^(-3/2) - 5^(-3)`
= `7^0 xx ( 5 xx 5 )^( -3/2 ) - 5^( -3 )`
= `7^0 xx (5^2)^(-3/2) - 1/5^3`
= `7^0 xx [(5)^[2 xx (-3/2)]] - 1/5^3`
= `7^0 xx 5^(-3) - 1/5^3`
= `1 xx 5^(-3)- 1/5^3`
= `1/5^3 - 1/5^3`
= `[ 1 - 1 ]/[ 5 xx 5 xx 5 ]`
= `0/125`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Simplify :
`( a + b )^(-1) . ( a^(-1) + b^(-1) )`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Find the value of (23)2.
`[(3/7)^-3]^4` = ______