Advertisements
Advertisements
प्रश्न
Evaluate :
`7^0 xx (25)^(-3/2) - 5^(-3)`
उत्तर
`7^0 xx (25)^(-3/2) - 5^(-3)`
= `7^0 xx ( 5 xx 5 )^( -3/2 ) - 5^( -3 )`
= `7^0 xx (5^2)^(-3/2) - 1/5^3`
= `7^0 xx [(5)^[2 xx (-3/2)]] - 1/5^3`
= `7^0 xx 5^(-3) - 1/5^3`
= `1 xx 5^(-3)- 1/5^3`
= `1/5^3 - 1/5^3`
= `[ 1 - 1 ]/[ 5 xx 5 xx 5 ]`
= `0/125`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Evaluate the following: `(3^2)^2`
Find the value of 46 × 4−4.
`[(3/7)^-3]^4` = ______