Advertisements
Advertisements
प्रश्न
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
उत्तर
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
= `sqrt( 1/2 xx 1/2 ) + ( 0.1 xx 0.1 )^(-1/2) - ( 3 xx 3 xx 3)^(2/3)`
= `1/2 + [(0.1)^2]^(-1/2) - (3^2)^(2/3)`
= `1/2 + ( 0.1 )^( 2 xx (-1/2)) - 3 xx ( 3 xx 2/3 )`
= `1/2 + ( 0.1 )^( - 1) - 3^2`
= `1/2 + 1/0.1 - 9`
= `1/2 + 10/1 - 9`
= `[ 1 + 20 - 18 ]/2`
= `3/2`
= `1 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
Simplify :
`( x^a/x^b)^( a^2 + ab + b^2 ) xx (x^b/x^c)^(b^2 + bc + c^2) xx (x^c/x^a)^( c^2 + ca + a^2 )`
Simplify:
`( x^a/x^-b )^( a^2 - ab + b^2 ) xx ( x^b/x^-c )^( b^2 - bc + c^2 ) xx ( x^c/x^-a )^( c^2 - ca + a^2 )`
If a = xm + n. yl ; b = xn + l. ym and c = xl + m. yn,
Prove that : am - n. bn - l. cl - m = 1
Find the value of 46 × 4−4.