Advertisements
Advertisements
प्रश्न
Show that :
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
उत्तर
`( a^m/a^-n)^( m - n ) xx (a^n/a^-l)^( n - l) xx (a^l/a^-m)^( l - m ) = 1`
= `( a^m xx a^n )^( m - n ) xx ( a^n xx a^l )^( n - l ) xx ( a^l xx a^m )^( l - m )`
= `( a^(m + n))^( m - n ) xx ( a^( n + l ))^( n - l ) xx ( a^( l + m ))^( l - m )`
= `a^( m^2 - n^2 ) xx a^( n^2 - l^2 ) xx a^( l^2 - m^2 )`
= `a^( m^2 - n^2 + n^2 - l^2 + l^2 - m^2 )`
= `a^0`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate :
`3^3 xx ( 243 )^(-2/3) xx 9^(-1/3)`
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify :
`( 3x^2 )^(-3) xx ( x^9 )^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Find the value of 10−3.
Find the value of (23)2.