Advertisements
Advertisements
प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
उत्तर
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
= `5^(-4) xx ( 5 xx 5 xx 5 )^(5/3) ÷ ( 5 xx 5 )^(-1/2)`
= `5^(-4) xx ( 5^3 )^(5/3) ÷ ( 5^2 )^(-1/2)`
= `5^(-4) xx [( 5)^[3 xx 5/3]] ÷[ ( 5)^[2 xx -1/2]]`
= `[ 5^(-4) xx 5^(5)]/5^(-1)`
= `[5^( 5 - 4 )]/[5^(-1)]`
= `[5^1]/[5^-1]`
= `5^[ 1 - (- 1)]`
= `5^2`
= 5 x 5
=25
APPEARS IN
संबंधित प्रश्न
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Simplify :
`( 8x^3 ÷ 125y^3 )^(2/3)`
Simplify :
`[ 5^( n + 3 ) - 6 xx 5^( n + 1 )]/[ 9 xx 5^n - 5^n xx 2^2 ]`
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
Simplify the following and express with positive index :
`([27^-3]/[9^-3])^(1/5)`
Simplify the following and express with positive index:
`[ 1 - { 1 - ( 1 - n )^-1}^-1]^-1`
If 2160 = 2a. 3b. 5c, find a, b and c. Hence calculate the value of 3a x 2-b x 5-c.
Evaluate the following: `(3^2)^2`
Find the value of 10−3.