Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index :
`(3^-4/2^-8)^(1/4)`
बेरीज
उत्तर
`(3^-4/2^-8)^(1/4)`
= `( 2^8/3^4)^(1/4)`
= `[(2^8)^(1/4)]/[(3^4)^(1/4)]`
= `[2^( 8 xx 1/4 )]/[ 3^( 4 xx 1/4 )]`
= `2^2/3`
= `4/3`
shaalaa.com
Laws of Exponents
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Evaluate :
`5^(-4) xx ( 125)^(5/3) ÷ (25)^(-1/2)`
Evaluate:
`( 27/125 )^(2/3) xx ( 9/25 )^(-3/2)`
Evaluate :
`(16/81 )^(-3/4) xx (49/9)^(3/2) ÷ (343/216)^(2/3)`
Evaluate :
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Evaluate:
`(27/8)^(2/3) - (1/4)^-2 + 5^0`
Simplify the following and express with positive index :
`(32)^(-2/5) ÷ (125)^(-2/3)`
If 1960 = 2a. 5b. 7c, calculate the value of 2-a. 7b. 5-c.
Simplify :
`[ 8^3a xx 2^5 xx 2^(2a) ]/[ 4 xx 2^(11a) xx 2^(-2a) ]`
Find the value of 10−3.
Find the value of (23)2.